Using The Superposition Principle

By superposition, any visibility (or modulation profile) for an extended
source can be represented as a sum over the responses to a set of point
sources. (This is just applied Fourier analysis.) The visibility for a point
source if flux A at (x,y) is:

th _ AeQm’(ux+vy) (1)

where u and v are the coordinates in the Fourier plane at angle ¢ for grids
of angular pitch p

u = 2mwcos(P) /p, v = 2msin(¢)/p (2)

For an RMC like RHESSI, the fundamental component of the response to a
point source is a similar sinusoid, with suitable modifications for the slowly
varying grid transmission and slit-slat ratios:

Cpt = Fo g(¢) [1 4 p(¢) m(¢) cos(uz + vy — )] (3)

In this expression, Fj is the flux of the point source, g(¢) is the grid trans-
mission X livetime at angle ¢, m(¢) is the maximum modulation amplitude,
p(¢) is the relative amplitude, and ® is the phase at map center.

An extended source with a brightness distribution I(z,y) (normalized to
unity) will produce a modulation profile given by:
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This is considerably simplified for Gaussian sources, round sources, or ”sep-
arable” sources.

Gaussian Sources

It is readily shown that for an elliptical Gaussian of the form

1 —(2' /a)2—(v
G(z',y') = = (z'/a)*—(y' /b)? (5)

where the coordinates have be rotated and shifted via:

x' = (z—xz¢) cosa—(y—1yo) sina, y' = (z—1z0) sina+(y—yo) cosa (6)



and

v = u cosa — v sina, v' = u sina +v cosa (7)
produces the RHESSI response:
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This shows that the response is the same as a point source at (zg, o) with
amplitude reduced by the factor:

cos(u'zg +v'yg — @) (8)

Poau(P) = e~ ([kacos(¢p—a)]*+[kbsin(p—a)]?) (9)

General Round Sources

If the profile I(x,y) of the source is not necessarily Gaussian but is round
(independent of @), the relative amplitude is given by the integral

p= 27T/I(7‘) Jo(kr)rdr, where 27T/I(r)rdr =1 (10)

Profiles of this form that may be integrated analytically are:
(a) Lorentzians
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(d) Pillbox

I(r) =

— if r <a,and 0 if r > q; p(k) = 2J,(ka)/ka (16)

In all cases as a — 0 or k — 0, p(k) — 1, as expected.



Separable Profiles

By ”separable” we mean that the radial and azimuthal dependences are
uncorrelated:

I(r) = R(r)T(0) (17)
This gives the following result for the relative amplitude:
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We can Fourier analyze T'(0)
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Then doing the azimuthal integrals we get:

psep(®) = Re i T € mP—i® /oo R(r)Jpm(kr)rdr (20)
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Exponential Profile

An example of a function R(r) which has explicit integrals for all m is:
[e.e]
R(r) = p?e™?" normalized to/ rR(r)dr =1 (21)
0

From Gray and Matthews(1958),
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The above equation is asymptotically correct for £ << 1 and all p > 0.

) E\™
lim (k) = (m + 1) (%) (23)

Numerical integration using QROMB corroborates the expression for H(k,p)

to several decimal places, and it agrees with the special cases m=0 and m=1
in Gradshteyn and Rhyzik (1994):
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Gaussian Profile

Another example of a function R(r) which has explicit integrals for all m is:
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From Abramowitz and Stegun (1966),
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where M is the confluent hypergeometric function.

Lorentzian Profile

A third example of a function R(r) which has explicit integrals is:
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Using K_/, = J72kae*a,
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